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Abstract— In this paper, we consider the problem of finding the number of zeros of a special class of analytic functions of 

polynomial functions in prescribed regions, by subjecting the certain restrictions on the real and imaginary coefficient for a 

certain stage by taking even and odd cases in our results. Our results generalized the earlier known results with the 

hypothesis about some special restriction on the real part and monotonic on imaginary parts of the polynomial coefficients 

and improved many theorems and corollaries. We have been working with the Eneström-Kakeya theorem hypothesis 

by about the number of zeros of a polynomial with restrictions. As special cases, the extended results yield much simpler 

expressions for the upper bounds of zeros of those existing results with the different types of restrictions on the coefficients 

of a polynomial and improved the many theorems and corollaries by taking analytic functions with complex coefficient.  
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I. INTRODUCTION 

 
      The famous result is known as Eneström-Kakeya [1-

2]. In this literature [3-5] there exist extensions and 

generalizations of the Eneström-Kakeya theorem.  

Finding approximate zeros of polynomial related to 

analytic function is an important and well-studied 

problem. To find the number of zeros polynomial related 

analytic function has already proved [6], by extending 

the Eneström-Kakeya theorem  

 

      Subsequently we have also generalized several 

results [6-9] by constructing various coefficients. 

 

       The purpose of this research paper is to generalize 

and extend location of zeros of analytic and number of 

zeros of analytic functions which are more interesting. 

We establish the following results. 

 

II. RELATED WORK 

 
Aziz and Mohammad [3] generalized the 

Enestrom Kakeya Theorem in a different way and 

proved the following by using Schwartz lemma. 

 

Theorem 2.1. Let      ∑    
    

    be analytic 

function in | |      
If                                  then F(z) 

does not vanish in | |     
 

Our results will be discussed by using the 

following results to prove our theorems. 

 

Lemma 2.2. [4]: Let       ∑    
    

    be analytic 

function in | |     such that   

|         |    
 

 
 |    |   |   |      

              .  Then  

|        |     |  | |    |         |  | |    |        
 

Lemma 2.3. [5]: I                                   
     | |                                          | |  
   

                       
 

   
 
 

   
 

|  |
  

 

III. MAIN RESULTS AND DISCUSSION 

 

Theorem 3.1.  Let       ∑    
    

    be analytic 

function in | |     such that   

|         |    
 

 
  

                               

           
|  |  |  |  |  |  |  |  |  |    |    |

 |    |   |  |  |    |
               

OR 

|  |  |  |  |  |  |  |  |  |    |    |
 |    |   |  |  |    |
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then (i) If n is even the number of zeros of        in 

| |          does not exceed  

 

 

   
 
 

   

[
 |  |        |  |              

      ∑   |   | |     |  
 
 
   

      ∑ |   |
 
   

]

|  |
   

 

 

(ii) If n is odd the number of zeros of        in | |    
      does not exceed  

 

 

   
 
 

   

[

 |  |        |  |              

      ∑   |     | |     |  
   
 

   

      ∑ |   |
 
   

]

|  |
   

 

Proof: Let                
        

     

be analytic function. 

Let us consider the polynomial                    so 

that 

                        
        

       

      ∑           

 

   

                                        

Now for | |       we have 

|    |  |  |   |       |  |       |  |       |
   |           |
 |                 |
 |                 |

 ∑ |         |

 

     

 

 |  |   |       |  |       |  |       |   
 |           |        |  | 

 |         |  |          |  ∑ |         |

 

     

 

By using lemma 1 we get 

 

|    |  |  |    |  | |  |        |  | |  |      
   |  | |  |        |  | |  |     
   |  | |  |      
  |  | |  |        
   |    | |    |      
  |    | |    |       

    |  | |    |       

   |  | |    |                            |  |
    |  | |    |      
   |  | |    |      

 ∑   |    |  |  |       

 

     

 ∑   |   |  |    |       

 

     

 

             

 

         |  |    |  |              

      ∑  |   |  |     |   

 
 

   

      ∑|   |

 

   

  |  |              

 

   [ |  |        |  |                

     ∑   |   |  |     |  
 

 
   

      ∑ |   |
 
   ]   

 

Apply lemma 2 to G(z), we get then number of 

zeros of  G       | |          does not exceed 

 

 

   
 
 

   

[
 |  |        |  |              

      ∑   |   | |     |  
 
 
   

      ∑ |   |
 
   

]

|  |
  

              
 

All the number of zeros of          | |      
    is also equal to the number of zeros of 

       | |                        
 

Similarly we can also prove for odd degree 

polynomials by re-arranging terms in above proof. 

That is if n is odd Apply lemma 2 to G(z), we get then 

number of zeros of  G      | |      
      does not exceed 

 

 

   
 
 

   

[

 |  |        |  |              

      ∑   |     | |     |  
   
 

   

      ∑ |   |
 
   

]

|  |
  

           . 

 

All the number of zeros of          | |      
    is also equal to the number of zeros of 

       | |                       
 

This completes the proof of theorem 3.1. 

 

Corollary 3.2..  Let       ∑    
    

    be analytic 

function in | |     such that   

|         |    
 

 
  

                               

       
|  |  |  |  |  |  |  |  |  |    |    |

 |    |  |  |  |    |
               

OR 
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|  |  |  |  |  |  |  |  |  |    |    |
 |    |  |  |  |    |
              

 

then (i) If n is even the number of zeros of        in 

| |  
 

 
   does not exceed  

 

 

    
   

[

|  |             

      ∑   |   | |     |  
 
 
   

      ∑ |   |
 
   

]

|  |
   

 

 

(ii) If n is odd the number of zeros of        in   | |  
 

 
    

does not exceed  

 

 

    
   

[

|  |             

      ∑   |     | |     |  
   
 

   

      ∑ |   |
 
   

]

|  |
 

 

Corollary 3.3.   Let       ∑    
    

    be analytic 

function in | |     such that   

              
|  |  |  |  |  |  |  |  |  |    |    |

 |    |   |  |  |    |
               

OR 

|  |  |  |  |  |  |  |  |  |    |    |
 |    |   |  |  |    |
              

 

then (i) If n is even the number of zeros of        in 

| |  
 

 
     does not exceed  

 

  
 

    
   

[
 |  |        |  | 

 ∑   |   | |     |  
 
 
   

]

|  |
   

 

(ii) If n is odd the number of zeros of        in | |  
 

 
    

does not exceed  

  
 

    
   

[
 |  |        |  | 

 ∑   |     | |     |  
   
 

   

]

|  |
 

Remark 3.4. By taking            
 

 
   in theorem 

3.1, then it reduces to Corollary 3.2. 

Remark 3.5. By taking             
 

 
 in theorem 

3.1, then it reduces to Corollary 3.3. 

 

Theorem 3.6.  Let       ∑    
    

    be analytic 

function in | |     such that   

                                        
        

                              

                    

OR 

                              

                   
 

then (i) If n is even the number of zeros of        in 

| |          does not exceed  

 

 

   
 
 

   

[
 
 
 
 
 

|  |  |  |       

   ∑               
 
 
   

      |  |  |  | 

|  |

]
 
 
 
 
 

   

 

(ii) If n is odd the number of zeros of        in | |       
      does not exceed  

 

 

   
 
 

   

[
 
 
 
 
 
 
 
|  |  |  |       

   ∑             
   
 

   

      |  |  |  | 

|  |

]
 
 
 
 
 
 
 

   

Proof: Let F              
        

  
      

       be analytic function 

 

Let us consider the polynomial                    so 

that 

 

                        
        

 

       
         

                ∑           

 

   

    

 

Now for | |     we have 

|    |  |  |   ∑|         |

 

   

 

 

             |  |  |  |   ∑|         |

 

   

 ∑|         |

 

   

 

 

               |  |  |  |  |       |  |       |
 |       |  |       |   
 |           |
 |                 |
 |                 |

 ∑ |         |

 

     

 ∑|         |
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             |  |  |  |                 
                  
                   |  |

             ∑          

 

     

 ∑         

 

   

          

 |  |  |  |          ∑              

 
 

   

      |  |  |  |  
 

Apply lemma 2 to G(z), we get then number of 

zeros of          | |          does not exceed 

 

 

   
 
 

   

[
 
 
 
 
 
 
 

|  |  |  |       

   ∑               
 
 
   

 

     |  |  |  | 

|  |

]
 
 
 
 
 
 
 

  

if n is even. 

 

       All the number of zeros of         | |       
      is also equal to the number of zeros of 

G       | |         , if n is even.  

 

      Similarly we can also prove for odd degree 

polynomials by re-arranging terms in above proof. 

 

     That is if n is odd Apply lemma 2 to G(z), we get 

then number of zeros of  G       | |          does 

not exceed 

 

   
 
 

   

[
 
 
 
 
 
 
 
|  |  |  |       

   ∑             
   
 

   

      |  |  |  | 

|  |

]
 
 
 
 
 
 
 

  

if n is odd.   

 

All the number of zeros of          | |      
    is also equal to the number of zeros of 

G       | |         , if n is odd.  

 

This completes the proof of theorem 3.6. 

 

 

Corollary 3.7.   Let       ∑    
    

    be analytic 

function in | |     such that   

                                            

                             

                    

OR 

                             

                   
 

then (i) If n is even the number of zeros of        in 

| |  
 

 
  does not exceed  

 

 

    
   

[
 
 
 
 
 
|  |  |  |       

   ∑             
 
 
   

 

|  |

]
 
 
 
 
 

   

 

 

(ii) If n is odd the number of zeros of        in  | |  
 

 
 

does not exceed  

 

 

    
   

[
 
 
 
 
 

|  |  |  |       

   ∑             
   
 

   
 

|  |

]
 
 
 
 
 

  

 

 

Remark 3.8. By taking            
 

 
   in theorem 

3.6, then it reduces to Corollary 3.7. 

 

Theorem 3.9.  Let       ∑    
    

    be analytic 

function in | |     such that   

                                        

                              

                         

OR 

                              

                        

 

then (i) If n is even the number of zeros of        in 

| |          does not exceed  

 

 

   
 
 

   

[
 
 
 
 
 |  |        ∑               

 
 
   

           |  |  |  |  ∑ |    |
 
     

|  |

]
 
 
 
 
 

   

 

 

(ii) If n is odd the number of zeros of        in | |    
      does not exceed  

 

 

   
 
 

   

[
 
 
 
 
 |  |        ∑             

   
 

   

           |  |  |  |  ∑ |    |
 
    

|  |

]
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Proof: Let F              
        

  
      

       be analytic function 
 

Let us consider the polynomial                     

so that 

 

                        
        

 

       
         

                 ∑           

 

   

    

 

Now for | |     we have 

|    |  |  |   ∑|         |

 

   

 

 

              |  |  |  |   ∑|         |

 

   

 ∑|         |

 

   

 

 

                 |  |  |  |  |       |  |       |
 |       |  |       |   
 |           |
 |                 |
 |                 |

 ∑ |         |

 

     

 ∑ |      |  |    | 

 

   

 

               |  |                         
                      
       |  |             

 ∑          

 

     

  ∑|    |

 

   

 

               |  |        ∑              

 
 

   

     

      |  |  |  |  ∑|    |

 

   

   

Apply lemma 2 to G(z), we get then number of 

zeros of          | |          does not exceed 

 

 

   
 
 

   

[
 
 
 
 
 |  |        ∑               

 
 
   

           |  |  |  |  ∑ |    |
 
     

|  |

]
 
 
 
 
 

  

if n is even. 

 

All the number of zeros of          | |      
    is also equal to the number of zeros of 

G       | |         , if n is even  

 

Similarly we can also prove for odd degree 

polynomials by re-arranging terms in above proof. 

That is if n is odd Apply lemma 2 to G(z), we get then 

number of zeros of  G       | |          does not 

exceed 

 

   
 
 

   

[
 
 
 
 
 |  |       ∑             

   
 

   

           |  |  |  |  ∑ |    |
 
    

|  |

]
 
 
 
 
 

  

if n is odd.   

 

      All the number of zeros of         | |          

is also equal to the number of zeros of G      | |      
      , if n is odd. 

 

This completes the proof of theorem 3.9. 

 

Corollary 3.10. .  Let       ∑    
    

    be analytic 

function in | |     such that   

                                  

                             

                          
OR 

                             

                        
 

then (i) If n is even the number of zeros of        in 

| |  
 

 
  does not exceed  

 

    
   

[
 
 
 
 
 |  |        ∑             

 
 
   

 ∑ |    |
 
     

|  |

]
 
 
 
 
 

   

 

 

(ii) If n is odd the number of zeros of        in | |  
 

 
 

does not exceed  

 

 

    
   

[
 
 
 
 
 |  |        ∑             

   
 

   

 ∑ |    |
 
    

|  |

]
 
 
 
 
 

  

Remark 3.11. By taking            
 

 
   in theorem 

3.9, then it reduces to Corollary 3.10. 

  

By re-arrangement of terms in above two 

theorems we get following theorem. 

 

Theorem 3.12. .   Let       ∑    
    

    be analytic 

function in | |     such that   
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OR 

                             

                   
 

then (i) If n is even the number of zeros of        in 

| |  
 

 
  does not exceed  

 

    
   

[
 
 
 
 
 |  |        ∑             

 
 
   

 ∑ |    |
 
     

|  |

]
 
 
 
 
 

   

 

(ii) If n is odd the number of zeros of        in  | |  
 

 
 

does not exceed  

 

 

    
   

[
 
 
 
 
 |  |        ∑             

   
 

   

 ∑ |    |
 
    

|  |

]
 
 
 
 
 

  

Proof:  Proof of this theorem is similar to the proof of  

above theorems. 

 

IV. CONCLUSION AND FUTURE SCOPE OF WORK 

 

In this research paper we, generalized various known 

results and established the number zeros of analytic 

function with restricted coefficients in various cases by 

constructing even and odd cases.  

 

If someone interested to do in this paper they may 

consider different types of coefficients and set up the 

different results. 
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